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Attention-Based Multiview Re-Observation Fusion
Network for Skeletal Action Recognition

Zhaoxuan Fan , Xu Zhao , Tianwei Lin, and Haisheng Su

Abstract—Action recognition is an important and popular area
in computer vision. Because of the helpfulness of action recognition
of the skeleton and the development of related pose estimation
techniques, action recognition based on skeleton data has drawn
considerable attention and has been widely studied in recent
years. In this paper, we propose an attention-based multiview
re-observation fusion model for skeletal action recognition. The
proposed model focuses on the factor of observation view of
actions, which greatly influences action recognition. The model
utilizes action information from multiple observation views to
improve the recognition performance. In this method, we re-
observe input skeleton data from several possible viewpoints,
process these augmented observation data with a long short-
term memory (LSTM) network separately, and, finally, fuse the
outputs to generate the final recognition result. In the multiview
fusion process, an attention mechanism is applied to regulate the
fusion operation according to the helpfulness for the recognition
of all views. In this way, the model can fuse information from
multiple viewpoints to recognize actions and can learn to evaluate
observation views to improve fusion performance. We also propose
a multilayer feature attention method to improve the performance
of the LSTM in our model. We utilize an attention mechanism
to enhance the feature expression by finding and focusing on
informative feature dimensions according to contextual action
information. Moreover, we propose stacking multiple layers of
attention operation in a multilayer LSTM network to further
improve network performance. The final model is integrated into
an end-to-end trainable network. Experiments conducted on two
popular datasets, NTU RGB+D and SBU Kinect interaction, show
that our model achieves state-of-the-art performance.

Index Terms—Action recognition, multiple views, attention
mechanism, skeleton, long short-term memory (LSTM).

I. INTRODUCTION

ACTION recognition is an important and popular research
topic in computer vision. The goal of action recognition is

to interpret videos in a human-centered manner, greatly assist-
ing the automatic analysis of media resources. In many realistic
applications, such as intelligent surveillance, video understand-
ing, human-machine interaction, and assistant driving, human

Manuscript received March 25, 2018; revised July 2, 2018; accepted July
3, 2018. Date of publication July 26, 2018; date of current version January
24, 2019. This work was supported in part by the National Natural Science
Foundation of China under Grants 61673269 and 61273285 and in part by
the Cooperative Medianet Innovation Center. The associate editor coordinat-
ing the review of this manuscript and approving it for publication was Prof.
Abdulmotaleb El Saddik. (Corresponding author: Xu Zhao.)

The authors are with the Department of Automation, Shanghai Jiao Tong
University, Shanghai 200000, China (e-mail:,fzx92@sjtu.edu.cn; zhaoxu@sjtu.
edu.cn; wzmsltw@sjtu.edu.cn; suhaisheng@sjtu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2859620

action recognition plays an important role in improving the in-
telligence level of machines.

Skeleton data are commonly used for human action recog-
nition. Skeleton data provide an accurate description of body
pose that is suitable and effective for precise action recognition.
The popularization of cost-effective motion capture cameras,
such as Kinect, and the development of efficient skeleton recon-
struction methods, such as [1], make it much easier to obtain
accurate human skeleton data and greatly encourage the study
of skeleton-based human action recognition. In this paper, we
explore this domain.

Currently, deep-learning-based methods have achieved im-
pressive performance and have evolved rapidly as the main-
stream methods in action recognition. For skeleton-based ac-
tion recognition, recurrent neural networks (RNNs), especially
long short-term memory (LSTM) [2], are a popular fundamental
framework because of their effectiveness for handling sequential
problems. Representative related methods include dRNN [3],
HBRNN [4], ST-LSTM [5] and STA-LSTM [6]. These methods
construct models on the basis of RNN to fitthe action recogni-
tion problem, revise the RNN unit or design the model structure
according to specific properties of action, such as skeleton struc-
ture or sequence information. Although relatively satisfactory
performance has been achieved, some important factors of ac-
tion recognition are often overlooked by the current methods.
The most important among them is the observation view of
actions.

The observation view has a significant influence on action
recognition. On one hand, actions can be observed from many
possible viewpoints, which increases the diversity of action ex-
pressions and greatly affects the generalization of the recogni-
tion algorithm. On the other hand, some actions are difficult to
recognize from certain viewpoints but easy to recognize from
others; therefore, in this situation, observing actions from suit-
able viewpoints greatly aids in recognition.

In this paper, we propose an attention-based multiview re-
observation fusion model for skeletal action recognition that
utilizes observation views to assist action recognition.

The proposed model re-observes actions from multiple
viewpoints and fuses the multiview information to improve the
recognition performance. Specifically, the proposed model first
re-observes an input action from several possible viewpoints,
processes these augmented observations with an LSTM
network, and finally fuses the processed outputs from all the ob-
servations to make the final decision. Thus, the proposed model
summarizes action information from multiple observation
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views in action recognition. Therefore, how to fuse multiview
information efficiently is an important problem. In our model,
an attention mechanism is introduced to guide the fusion pro-
cess. The helpfulness of re-observation views for recognition is
evaluated by the attention mechanism and is then quantified to
guide fusion. The attention-guided fusion enables the model to
find suitable observation views for specific actions and improves
fusion performance. Essentially, the fusion of multiview infor-
mation further propels the model to learn the invariant features
in specific actions and therefore assists action recognition.

Furthermore, inspired by the success of the attention mech-
anism, a multilayer feature attention method is proposed to en-
hance feature expression and improve network performance.
Substantial redundant or irrelevant information exists in action
sequences and usually interferes with action recognition. In our
model, we use attention to find and focus on informative joints
or features to emphasize primary action information. In some
other works, such as STA-LSTM [6], an attention mechanism
is also applied to skeleton or sequence information. However,
we propose to use the attention mechanism as a general feature
enhancement method and stack multiple layers of attention op-
eration in a multilayer LSTM network to further improve the
performance.

The overall model, which consists of the components men-
tioned above, is integrated into an end-to-end trainable network.
Our model is applied to two popular datasets, NTU RGB+D and
SBU Kinect Interaction. A comparison with other current meth-
ods shows that our model achieves state-of-the-art performance,
and further ablation experiments show the effectiveness of our
proposed method.

In conclusion, there are two main contributions of our work:
1) We propose an attention-based multiview re-observation

fusion model for skeletal action recognition that utilizes
action information from multiple observation views to
improve the recognition performance and that uses an
attention mechanism to find suitable observation views
for recognition.

2) We propose a multilayer feature attention method to en-
hance feature representation and to improve the perfor-
mance of the LSTM network. We propose to use the
attention mechanism as a general feature enhancement
method that can be stacked in multilayer networks to fur-
ther improve the performance.

The rest of this paper is organized as follows. Section II sum-
marizes the related work on skeleton-based action recognition
and attention mechanisms. Section III explains the proposed
methods in detail. Section IV presents the related experimental
results, and Section V concludes our work.

II. RELATED WORK

A. Skeleton-Based Action Recognition

Human action recognition has long been an attractive topic in
computer vision. Skeleton data, which represent human poses
in an articulated system of joints and limbs, is a commonly used
data type for action recognition. Compared to video data, skele-
ton data provide an explicit description of body poses and are

therefore more suitable and efficient for accurate human action
recognition. In recent years, with the development of efficient
motion capture devices and pose estimation algorithms, it is
becoming easier to obtain human skeleton information. There-
fore, skeleton-based action recognition has recently attracted
substantial attention.

For skeleton-based action recognition, traditional methods,
such as Skeletal Quads [7], Lie Group [8], and works such as
[9]–[13], follow the typical routine of many computer vision
problems–design and extract features that represent the spatial
information and temporal dynamics in an action sequence, then
design and use a classification algorithm to classify actions.
Handcrafted features require substantial experience and tests
and are therefore difficult to implement.

In recent years, deep-learning-based methods have achieved
greatly improved performance compared to that of traditional
methods and have become the mainstream approach.

Due to its suitable nature to process sequence data, RNN is
currently the most popular framework in skeleton-related ac-
tion recognition. Some remarkable RNN-related methods for
skeleton-based action recognition have been proposed in the
past few years. Differential RNN [3] revises the original LSTM
unit to emphasize salient sequence information. In dRNN, the
derivative of internal LSTM states (DoS) is used to indicate the
saliency of input information. The gates of the LSTM unit are
revised to include the DoS term, so the DoS also influences in-
formation accumulation in the LSTM, by which the salient data
input steps are emphasized. Hierarchical BRNN [4] utilizes the
heuristic knowledge of the human body and designs a hierarchi-
cal LSTM network. In the network, the skeleton is split into five
groups (arms, legs and trunk), which are then separately pro-
cessed by RNN. Their outputs are fused from the local structure
to global structure hierarchically according to the structure of the
human body to accumulate action information. Traditionally, in
an LSTM framework, in each time step, the skeleton data of the
corresponding frame are fed into the network. Spatio-temporal
LSTM [5] extends this traditional temporal domain framework
to the spatio-temporal domain. In addition to the temporal ac-
tion sequence, the joints in the skeleton in each time step form a
spatial sequence. ST-LSTM simultaneously processes both the
temporal and spatial sequence information. Furthermore, it in-
troduces a trust gate to address possible noise and occlusion in
the skeleton data. Other similar works include [14]–[17]. These
methods are all based on the RNN framework and its extensions
and are designed to better perform the skeleton-based action
recognition task. Our work is also based on RNN, but we focus
on the aspect of observation view, which is rarely considered in
the above methods.

Another popular type of method is using CNN to process a
transferred skeleton image. This type of method, such as [18]–
[24], first designs an algorithm to encode skeleton data into an
image and then uses CNN to process the encoded skeleton im-
age to classify actions. Du et al. [25] propose an algorithm for
skeleton-image encoding that arranges skeleton sequence data
into a matrix in a certain order and then quantifies the matrix
into an image. The quantified image includes the spatial skele-
ton representation and the temporal sequence dynamics and is
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processed by CNN for classification. Hou et al. [26] design a
more explicit method of skeleton encoding. The skeleton se-
quence is drawn onto canvas in order from three viewpoints,
and different colors are used to highlight joint locations and se-
quence information. The core of this class of method is the de-
sign of the encoding algorithm, which is another type of feature
design that requires considerable experience and experimenta-
tion. Our work uses the skeleton data directly, aiming for an
automatic and intelligent method of action recognition.

Some other creative works have been reported. A2 GNN [27]
utilizes a graphic neural network to model the skeleton action
sequence, in which the skeleton is treated as an undirected graph.
A2 GNN also adopts attention to detect salient action units. ST-
NBMIM [28] proposes a spatio-temporal naive Bayes mutual
information maximization algorithm to identify critical spatial
and temporal information in the skeleton action sequence and
forms discriminative action patterns for recognition. A multitask
learning CNN is proposed in [29] to solve pose estimation and
action recognition problems simultaneously. Predicted human
poses are also used to help action recognition. In contrast to
these methods, we focus on an RNN-based method and achieve
competitive or better results.

B. Attention Mechanism

The attention mechanism is first proposed to imitate the vision
mechanism of primates. In the vision process, primates tend to
pay attention to a limited area, and the attention changes with
time and task. Inspired by this biological discovery, an attention-
based model that imitates this visual attention mechanism to
analyze scene saliency is first proposed in [30].

Recently, the application of attention in some natural lan-
guage processing and vision tasks has shown considerable
progress. An attention mechanism is introduced into a tradi-
tional encoder-decoder translation framework [31]. In each de-
coding step, attention is used to direct the feature fusion of the
encoder outputs by assigning relevance weights according to
contextual information. An RNN model that combines a visual
attention mechanism and reinforcement learning is proposed in
[32]. This recurrent model of visual attention can iteratively se-
lect a sequence of interest patches from an image for specific
tasks. The application of this model in image classification il-
lustrates its effectiveness. The recurrent visual attention model
in [33] is extended to an image captioning task, where it is in-
cluded in a typical encoder-decoder captioning framework. The
model iteratively selects areas of interest from the image for
captioning in each step. These successful applications drive the
exploration of attention in many other areas, such as [34]–[38].

An attention mechanism is also applied in many works on
skeleton-based action recognition. Spatio-temporal attention
LSTM [6] improves basic LSTM networks by adding a spatial
and temporal attention mechanism. The spatial attention focuses
on the importance of different body joints, while the temporal
attention focuses on the importance of different action steps.
Global context-aware attention LSTM [39] extends the spatio-
temporal LSTM [5] with a recurrent global attention mechanism
that iteratively improves attention performance based on global

contextual information. These applications of attention mecha-
nisms in skeletal action recognition achieve great results. In our
work, attention is used in two new ways. First, we use attention
to guide the fusion of multiple views to improve fusion perfor-
mance. Second, we use attention to enhance feature expression
and combine the multilayer feature attention operation with a
multilayer LSTM network, which further improves the network
performance.

III. METHOD

Our model is built on the basis of LSTM. Fig. 1 shows the
framework of our proposed model. Two main methods are in-
cluded in the model. First, the attention-based multiview re-
observation fusion method forms the overall framework of the
model. The input skeleton is first observed from several possible
views, generating multiple re-observation results. These obser-
vations are processed separately by the LSTM network, and
their processing outputs are fused with attention to make the fi-
nal recognition decision. Second, a multilayer feature attention
method is applied in the main LSTM network. The attention
mechanism enhances feature expression by focusing on infor-
mative feature dimensions. Stacking multiple layers of feature
attention operation in the multilayer LSTM network further im-
proves the network performance.

A. Problem Formulation

For skeleton-based action recognition, the input is a time
sequence of skeleton data [s1 , s2 , ..., sT ], where st is the loca-
tions of the joints in the skeleton at time t, arranged in a specific
order.

Our goal is to learn a model F that maps the skeleton sequence
[s1 , s2 , ..., sT ] to certain action class y.

y = F ([s1 , s2 , ..., sT ]) (1)

The model needs to handle the spatial information and tem-
poral dynamics of skeleton sequences to solve the mapping
problem.

B. LSTM Review

The recurrent architecture of RNN is designed to process
sequential data. The calculation of a basic RNN unit is shown
below. The current output ht is determined by both the current
input xt and the previous output ht−1 , calculated with model
weights Wx, Wh and b. This process enables the accumulation
of history information.

ht = φ(Wx · xt + Wh · ht−1 + b) (2)

Theoretically, RNN can handle sequential dependencies of
any length. However, as described in [2], many realistic prob-
lems, such as gradient vanishing and explosion in training, pre-
vent the ideal realization. A long short-term memory network
(LSTM) is a modified version of RNN designed to handle long-
term dependencies. In contrast to the simple perceptron struc-
ture in an RNN unit, an LSTM cell consists of three gates.
These gates control information flow in the cell and build linear
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Fig. 1. Framework of our proposed model. There are two essential components in our work. 1) Attention-based multiview re-observation fusion network, which
forms the overall framework of our model. The input skeleton is first transformed into several possible view observations. These skeleton observations are processed
by the proposed attention LSTM separately, and their outputs are fused for the final result. In the fusion process, an attention module generates weights for different
views to highlight the helpful views. 2) Attention LSTM, a multilayer LSTM network integrated with attention. In attention LSTM, the input of every LSTM layer
is enhanced with feature attention.

connections that can mitigate the problem of gradient vanishing
and explosion.

The computation in an LSTM cell is as below:

ForgetGate : ft = σ(Wf · [ht−1 , xt] + bf ) (3)

InputGate : it = σ(Wi · [ht−1 , xt] + bi) (4)

OutputGate : ot = σ(Wo · [ht−1 , xt] + bo) (5)

StateCandidate : C̃t = tanh(WC · [ht−1 , xt] + bC) (6)

CellState : Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

Output : ht = ot ∗ tanh(Ct) (8)

where W∗ and b∗ are learned model parameters. The cell state C
refers to the information of the LSTM unit. The forget, input and
output gates, which control the information flow of the LSTM,
are computed based on the current input xi and the previous cell
output ht−1 . The forget gate ft controls how many previous cell
states Ct−1 are retained. The input gate it controls how many
input xi should be received. The output gate ot controls the
transformation from cell state to output.

C. Attention Mechanism

In machine learning applications, the basic idea of an attention
mechanism is to identify and pay more attention to the impor-
tant or relevant features according to the task requirements and
contextual information. Usually, an attention mechanism can be
implemented in one of two ways.

One is hard attention, which processes only the selected im-
portant features and ignores all other unimportant features. Hard
attention can be considered to be a 1/0 mask for feature el-
ements. Networks with hard attention are non-differentiable;
therefore, hard attention is usually combined with reinforce-
ment learning for training and prediction.

The other is soft attention, which processes all the elements
but assigns a different weight to each feature according to its
importance or relevance. Networks with soft attention are dif-
ferentiable and can be trained end-to-end with common back-
propagation. Therefore, soft attention is more convenient for
implementation.

In deep learning, attention is usually implemented with the
framework of RNN. RNN naturally accumulates contextual in-
formation of sequential tasks, which is used in attention gen-
eration. Usually, for soft attention, the attention weights of the
current RNN step At are generated with the RNN state of the
previous step ht−1 , which represents contextual information,
and the current input xt:

At = Fattention (ht−1 ,xt). (9)

where At is the attention weights generated by attention model
Fattention , which are then used to guide the usage of features.

D. Multiview Re-Observation Fusion With Attention

In action recognition, the observation view has a substan-
tial influence and reflects two main aspects. First, action data
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Fig. 2. Multiview fusion with attention.

can be collected from different views. A change in observation
view increases data diversity, which should be considered in the
model implementation and training for better performance. Sec-
ond, some actions are easy to recognize when observed from
certain views but hard to recognize from others. In this case,
finding suitable views of the input data will help to improve the
recognition performance. Based on this intuition, considering
possible view observations in action recognition is no doubt
beneficial. Therefore, we propose an attention-based multiview
re-observation fusion method. The view changing requires the
model to learn to cover a more complex and extensive feature
space, which makes the processing more difficult. In our method,
the model itself makes view changes to the input data to help
adapt to view changing and obtain more sufficient information
of action representations.

The structure of the proposed multiview re-observation fu-
sion network is illustrated in Fig. 2. The input skeleton is first
processed by several transformations, resulting in observations
from different views. These skeleton observations are then pro-
cessed separately by an LSTM network, after which their outputs
are fused together for the final recognition result. The attention
mechanism is applied during fusion to evaluate the helpfulness
for the recognition of observation views and to assign fusion
weights.

In practice, we obtain new view observations by rotating the
input skeleton s. N rotations are performed on skeleton data
to generate N observations that cover possible skeleton views
discretely.

In this process, skeleton data are first re-centered at the Hip −
Center joint to reduce skeleton shifting caused by rotation.
Then, the skeleton is rotated in a 3D coordinate system. In
the 3D coordinate system, the rotation of a joint in skeleton
ji = [jx

i , jy
i , jz

i ]T can be represented as

j̃i = RxRyRzji, (10)

where Rx,Ry , and Rz denote rotation around the X,Y , and Z
axes, respectively. To be more specific, rotation around the Z
axis can be represented as

Rz(θ) =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 (11)

where θ denotes the rotation angle around the Z axis.

Fig. 3. Skeleton rotation around the Z axis.

In reality, most view changes are caused by observations
from different horizontal angles. These view changes can be
considered to be rotations of a skeleton around the Z axis in
the 3D coordinate system. Therefore, to reduce the calculation
complexity, we consider rotations around on the Z axis in our
method. Fig. 3 illustrates the added view change in our method.

As discussed previously, of all the view observations, some
are helpful for recognition but some might even be obstacles.
Therefore, attention is also introduced to adjust the view fusion.
Attention adjusts the weights according to contextual informa-
tion. Helpful views receive higher weights while non-helpful
ones receive lower weights in fusion process. In this way, the
multiview fusion network learns to select appropriate views for
recognition.

The attention weights Av for multiview fusion are calculated
by:

A
′

v = U(tanh(Wvx · st + Wvh · ht−1 + bv1)) + bv2 ,
(12)

Av = Softmax(A
′

v), (13)

where U ,Wv∗, and bv∗ are learned parameters, st is the skele-
ton input of the current step, and ht−1 is the model output of
the last time step.

The outputs of different view transformations are fused by
the weighted sum with attention weights:

ht =
N∑

i=1

Ai
v · hi

t (14)

Here, [h1
t , ...,hN

t ] are the outputs of the attention LSTM for
multiple-view skeleton observations. The fused output ht is the
weighted sum of [hi

t], which is then processed by softmax for
the final recognition.

E. Feature Attention

1) Attention of Skeleton Joints: For human actions, only a
few body parts are often crucial, while most body parts are ir-
relevant. For example, regardless of the posture of a subject,
an action is classified as eating whenever the subject is putting
something into his mouth. In this case, only the interaction be-
tween the hand and mouth determines the eating action. There-
fore, paying more attention to the hands and mouth will help to
improve the recognition of an eating action. Based on this idea,
we introduce attention into our model to learn to find crucial
skeleton joints according to action information and to pay more
attention to them for better recognition.
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Fig. 4. Feature attention for one LSTM layer.

In our method, soft attention is used because all body parts
may be involved in actions and also because of its convenience
for computation. Fig. 4 demonstrates the feature attention tech-
nique adopted in our method. The recognition of skeleton data is
implemented with an LSTM network. The importance of skele-
ton joints in the current context is predicted with the attention
operation according to the contextual information. The skeleton
input is then revised in reference to the predicted importance
weights, and the revised input is input into the LSTM network
for recognition.

The importance weights of the skeleton joints are calculated
with soft attention by

Aj = Uj(tanh(Wjh · ht−1 + Wjs · st + bj1)) + bj2
(15)

Here, Uj ,Wj∗, and bj∗ are learned parameters. The LSTM
state of the previous step ht−1 denotes the contextual action
information accumulated in the LSTM. Based on the current
input st and previous LSTM state ht−1 , the importance of the
skeleton joints for the current context is predicted. Aj is the
attention weight vector corresponding to J body joints. The
attention weights are then used to revise the skeleton input,
through which the joints are emphasized according to their im-
portance. For skeleton input st = [jt,1 , jt,2 , ..., jt,J ] (J joints),
the revised input is

s̃t = [jt,1 , jt,2 , ..., jt,J ] ◦ Aj (16)

The revised inputs x̃t embody the importances of different
joints. By this attention enhancement, the motion of more im-
portant joints is enlarged, while that of the less irrelevant joints
is reduced. This process emphasizes the relevant sequential or
interactive information of those important joints and therefore
assists action recognition.

2) Multilayer Feature Attention: Inspired by the success of
skeleton attention, we further consider that attention can be
regarded as a universal feature enhancement method and that
stacking multilayer feature attention will result in further im-
provement. Similar to that of joints, for general features, the
importance varies for different tasks or process phrases. Paying
more attention to features that are more important in specific
conditions is beneficial for improving feature expression.

We implement this idea in the multilayer LSTM network as
the attention LSTM. In attention LSTM, which contain 3 LSTM
layers, the output of the previous LSTM layer is taken as the

Fig. 5. Multi-layer feature attention in LSTM network. The input feature of
each LSTM layer is enhanced with attention mechanism.

input feature for the next LSTM layer. Attention is applied to
enhance features transfered between LSTM layers. The attention
is implemented similar to that of joints. For the l-th LSTM layer
(l > 1), the attention weights for the input feature are calculated
by:

A
′

l = tanh(Wlh · hl,t−1 + Wlx · hl−1,t + bl1) (17)

Al = Ul · A
′

l + bl2 (18)

where Ul,Wl∗, and bl∗ are learned parameters. hl−1,t is the
output state of the previous LSTM layer, which is the input fea-
ture of the l-th LSTM layer. hl,t−1 is the previous state of the
l-th LSTM layer. In the same way as for joints, the attention
weights of features are computed based on input feature hl−1,t

and contextual information hl,t−1 . Additionally, the input fea-
ture hl−1,t of layer l at time t is revised by:

h̃l−1,t = hl−1,t ◦ Al (19)

Fig. 5 illustrates the application of multilayer feature attention
in the LSTM network.

F. Integrated Training

The whole model, which includes multiview fusion and at-
tention LSTM, is shown in Fig. 1. The model is end-to-end
trainable with standard backpropagation, and it is trained with
typical regularized log-likelihood loss,

L = −
C∑

i=1

yi log ỹi + λ‖W ‖2 . (20)

Here, yi is the ground-truth label of the training data. ỹi is the
label predicted by the model. C is the total number of classes.
The first term is the log-likelihood function of the model, which
drives the model to fit the probability distribution of the training
data. ‖W ‖2 represents the L2 penalty of model parameters W .
λ is the corresponding regularization coefficient. The second
term is the parameter regularization of the model, which reduces
over-fitting.
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IV. EXPERIMENT

A. Datasets

Our methods are applied to two popular datasets: NTU
RGB+D [40] and SBU Kinect Interaction [41].

1) NTU RGB+D: The NTU RGB+D dataset is currently the
largest and most challenging dataset for 3D action recognition.
The dataset includes 56880 video samples of 60 action classes,
which are performed by 40 subjects and captured from 3 dif-
ferent views. The actions in this dataset include single-person
actions and two-person interactions. In this dataset, two stan-
dard evaluation methods are proposed: Cross-Subject (CS) and
Cross-View (CV). In CS, 40 subjects are split equally into the
training and test set. In CV, cameras 2 and 3 are used for training,
and camera 1 is used for testing.

2) SBU Kinect Interaction: SBU Kinect Interaction is a
dataset of two-person interactions that contains 230 samples
from 8 action classes in total, which are performed by 7 sub-
jects and captured by one fixed camera. The commonly used
evaluation protocol is 5-fold cross validation proposed along
with the dataset.

B. Implementation Details

Our method is implemented on the TensorFlow [42] plat-
form. The main network contains three layers of standard
LSTM. Each LSTM layer has 100 neurons for the NTU RGB+D
dataset and 50 for the SBU dataset. The regularization term λ

is 0.0005 0.001 for different network configurations. Dropout
[43] of 0.5 is applied to avoid over-fitting. The whole network
is trained end-to-end with the Adam algorithm, and the initial
learning rate is 0.001.

The skeleton data are sampled to the same length. For
the NTU RGB+D dataset, T = 100 frames are sampled for
each data sequence. For the SBU dataset, a length of T = 20
is adopted. Data sequences shorter than T are padded with
zeros.

C. Comparison With State-of-the-art Methods

Table I shows the comparison with other state-of-the-art
methods on the NTU RGB+D dataset. For a fair comparison,
the results reported in related papers are adopted in the compar-
ison. LSTM + FA refers to the 3-layer LSTM combined with
the multilayer feature attention method. LSTM + VF refers to
the 3-layer LSTM combined with the multiview fusion method.
LSTM + FA + VF refers to our final model, the 3-layer LSTM
combined with multiview fusion and multilayer feature atten-
tion. For cross-view evaluation, our method outperforms the
other methods by 3% or more, while for cross-subject evalua-
tion, our method achieves performance similar to the currently
best method, GCA-LSTM. Specifically, in the cross-subject
evaluation, the multilayer feature attention method results in
more improvement than does the multiview fusion method be-
cause it helps to obtain the key action information from dif-
ferent subjects. For the cross-view evaluation, multiview fusion
method results in greater improvement than does multilayer at-
tention because the fusion of multiview information enables

TABLE I
COMPARISON FOR THE NTU RGB+D DATASET

* VF (multiview fusion).
FA (multilayer feature attention).

TABLE II
COMPARISON FOR THE SBU DATASET

the model to better learn the invariant features across different
views.

Table II shows the comparison with other state-of-the-art
methods for the SBU Kinect Interaction dataset. The results
reported in the related papers are adopted in the comparison.
Our method achieves the best results. The data in the SBU
dataset are collected from a fixed camera; therefore, multilayer
feature attention works better than does multiview fusion, just
as it does for NTU RGB+D. Moreover, the combination of these
two methods achieves further improved results.

D. MultiView Re-Observation Fusion

Our proposed multiview re-observation fusion method is ap-
plied to the two datasets. As illustrated in Fig. 2, a basic 3-layer
LSTM network is adopted as the main LSTM network. Different
view fusion methods and configurations are tested.

Tables III and IV show the experimental results for the fusion
methods. The LSTM outputs of different view observations are
fused by different methods to generate the final results. Three fu-
sion methods, namely, averaging, attention (tanh) and attention
(softmax), are tested. In the experiment, for the NTU RGB+D
dataset, the rotation angles are [0◦,±60◦], and for SBU, they are
[0◦,±90◦].
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TABLE III
VIEW FUSION METHOD EXPERIMENTS ON THE NTU RGB+D DATASET

* ave: view weights are [1/N ].
tanh: attention weights are calculated by tanh(W x + W h + b).
softmax: attention weights are calculated by sof tmax(U · tanh(W x + W h + b)).

TABLE IV
VIEW FUSION METHOD EXPERIMENT ON THE SBU DATASET

TABLE V
VIEW SETTING EXPERIMENT ON THE NTU RGB+D DATASET

We can see that even fusion by simply averaging the outputs
of different view observations improves the accuracy, and the
application of attention in view fusion results in additional sub-
stantial improvements. Moreover, the comparison shows that
softmax is better than tanh for generating attention weights
in this situation. We believe that this is because every view ob-
servation is a correct representation of the skeleton data, and
softmax is more suitable for fusing these observations by ap-
plying normalized weights to all the view observations.

The experimental result shows that our proposed multiview
re-observation fusion method is effective in 3D action recogni-
tion. It is worth mentioning that the data in the NTU RGB+D
dataset are collected from three different views while the SBU
dataset has only one fixed view. In experiment, multiview fu-
sion achieves significant improvements on both datasets, which
indicates that considering multiple views of action sequences is
a general method to improve 3D action recognition.

We also tested different view settings for multiview re-
observation. Table V and Table VI show the experimental re-
sults. The results show that fusing any views improves the
accuracy, but the appropriate views are different for different
datasets. For NTU RGB+D, the data are collected from views
of [0◦,±45◦]. But in our experiment, view fusion of [0◦,±60◦]
gives the best result. For the SBU dataset, view fusion of
[0◦,±90◦] gives the best result. Furthermore, the results show
that increasing the number of fused views results in a minimal

TABLE VI
VIEW SETTING EXPERIMENT ON THE SBU DATASET

Fig. 6. Multiple view observations and their attention weights from a learned
model of some examples from the NTU RGB+D dataset. (a) Drink water. (b)
Take off a hat. (c) Put something inside pocket/take out something from pocket.
(d) Taking a selfie.

increase, or even a decrease, in accuracy. Therefore, we consider
fusion of only three views. According to the results, to obtain the
best performance, view settings of [0◦,±60◦] for NTU RGB+D
and [0◦,±90◦] for SBU are used in the later experiments.

Fig. 6 shows the view observations and their attention weights
from a learned model of some examples from the NTU RGB+D
dataset. From the experiment, we find that the learned model
tends to observe subjects from the front view, where the skeleton
joints are dispersed by the maximal level. As in Fig. 6, the front
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Fig. 7. Feature attention experiment on NTU RGB+D. Each cluster in the
figure shows the comparison results of one dataset or one evaluation protocol.
For bars in each cluster, from bottom to top, the number of attention layers
increases from 0 to 3.

Fig. 8. Visualization of learned joint weights from attention on the NTU
RGB+D dataset. The size of the joint indicates its attention weight. Each se-
quence visualizes an example of an action from NTU RGB+D. (a) Drink water.
(b) Putting on glasses. (c) Clapping. (d) Kicking something.

views usually receive higher attention weights while the side
views receive lower attention weights.

E. Multilayer Feature Attention

We evaluate the effectiveness of our proposed multilayer fea-
ture attention method on the NTU RGB+D and SBU datasets.

TABLE VII
INTEGRATION EXPERIMENT ON THE NTU RGB+D DATASET

* VF (skeleton multiview fusion).
FA (feature attention, n means the layer of feature attention).

In this experiment, a basic 3-layer LSTM network is used for
recognition. Different layers of feature attention operation are
applied in the network, and their performances are compared.

Fig. 7 shows the experimental results of the feature attention
experiments on two datasets. FA-n in the figure means that the
feature inputs of the first n LSTM layers in the network are
processed with feature attention.

The results show that the application of feature attention sig-
nificantly improves the recognition performance. Additionally,
stacking two layers of feature attention results in further im-
provement. However, stacking three layers of feature attention
does not result in evident improvement but instead can decrease
the accuracy. This phenomenon is clearer on the relatively small
SBU dataset. We believe that this is because multiple layers
of feature attention result in additional model complexity and
cause over-fitting. In conclusion, the experimental results indi-
cate that our proposed multilayer feature attention is effective
in the LSTM network. However, additional effort is required
in determining the settings to avoid over-fitting when too many
layers of feature attention are applied.

Fig. 8 shows the visualization of attention weights for body
joints in some actions on the NTU RGB+D dataset. The learned
attention weights effectively emphasize the corresponding ac-
tion information. At the beginning of an action sequence, the
weight of every joint is relatively small and equal. As the action
proceeds, the weights vary according to the contextual action
information and emphasize those informative body joints. In
the action of drinking water, the interacting body parts, i.e.,
the head and right arm, received increasingly larger weights as
the sequence proceeds. Similarly, the head and two arms in the
putting on glasses action, the two hands in the clapping action,
and the right leg in the kicking something action also receive
higher attention weights. This result indicates that the model
has learned to focus on informative body joints on the basis of
contextual action information.

Another finding in our experiment is that the learned attention
is greatly affected by the dataset information. For example,
most of the subjects in the NTU RGB+D dataset are right-
handed. Therefore, the learned model tends to assign higher
weight to the right arm. In Fig. 8, we can see that even in two-
handed actions, like putting on glasses and clapping, the right
arm receives higher attention than the left arm. Additionally,
the upper body usually has higher attention than the lower body
because the dataset contains more actions involving the upper
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TABLE VIII
INTEGRATION EXPERIMENT ON THE SBU DATASET

Fig. 9. Confusion matrices of the NTU RGB+D dataset. We can see that the
most significant classification errors occur among classes that are physically
similar. (a) Cross-subject evaluation. (b) Cross-view evaluation.

body. We believe this means the model is able to learn the
dominant features in data, which is helpful for recognition.

F. Integration Experiment

Feature attention (FA) and multiview re-observation fusion
(VF) by attention are combined in our final model, and the

Fig. 10. Confusion matrices of the SBU Kinect Interaction dataset for 5 test
sets. (a) Fold 1. (b) Fold 2. (c) Fold 3. (d) Fold 4. (e) Fold 5.

integration performance is evaluated on the NTU RGB+D and
SBU datasets.

Table VII and Table VIII show the related experimental results
for the two datasets. In this experiment, combining multiview
fusion with one or two layers of feature attention in LSTM im-
proves the accuracy by 1% ∼ 3%. However, when combining
with three layers of feature attention, the accuracy decreases.
We can see that the combination of feature attention and view
fusion can improve recognition performance. However, as in the
feature attention experiment, too many layers of feature atten-
tion can cause over-fitting, which is harmful to the performance.
Therefore, according to the experimental results, our final model
adopts two layers of feature attention in LSTM, which is inte-
grated into the multiview fusion network.

G. Result Analysis

Fig. 9 and Fig. 10 show the confusion matrices for the NTU
RGB+D and SBU Kinect Interaction datasets, respectively.
As can be seen, the most significant classification errors oc-
cur among classes that are physically similar. These confusing
classes include reading, writing, playing with phone and typing
on a keyboard; clapping and rubbing two hands together; and
putting on a shoe and taking off a shoe. The main reason for these
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Fig. 11. Example pictures of confusing cases for the model. The physical
differences between some action classes are very tiny, and it is difficult to
distinguish them without the information of the interacting objects. (a) RGB
Image (Reading/Playing with tablet/Typing on a keyboard). (b) Skeleton (Read-
ing/Playing with tablet/Typing on a keyboard).

classification errors is that these actions differ by small body
motions, which are difficult to capture and distinguish. Another
reason is that many actions include interactions with objects,
such as reading, writing, playing with phone and typing on a
keyboard. In this situation, skeleton-based action recognition
lacks this object information and thus performs badly. Fig. 11
shows some example pictures of these cases. This also reveals a
major problem of purely skeleton-based action recognition, i.e.,
that it lacks object and appearance information. Therefore, it is
more suitable for human-only actions.

V. CONCLUSION

In this paper, we propose an attention-based multiview re-
observation fusion model for skeletal action recognition. The
proposed model utilizes multiple-view information to improve
the recognition performance by re-observing input data and fus-
ing observed data from multiple views in recognition. The at-
tention mechanism applied in the fusion process enables the
model to evaluate the helpfulness of views for recognition and
to regulate the fusion operation accordingly. In the proposed
model, a multilayer feature attention method is also proposed to
enhance feature expression and to improve the LSTM network
performance. The proposed methods are integrated into an end-
to-end-trainable network. Experiments on two popular datasets
show that the proposed model achieves state-of-the-art perfor-
mance, and further ablation experiments show the effectiveness
of the proposed methods.
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